Mulkioplic@\}ion @nd Divvision

Fact Fluency Strategies

Strategies are based on multiplication and to become fluent in division facts, students relate the division fact to the known multiplication fact.

$\times 2$ Facts

With these facts, students can skip count by 2 s or use doubles addition facts to solve.

Examples:

$$
\begin{array}{ll}
7 \times 2=14(\text { Add } 7+7=14) & 14 \div 2=7 \\
2 \times 6=12 \text { (Count by } 2 s 6 \text { times...2, } 4,6,8,10,12) & 12 \div 6=2
\end{array}
$$

$\times 10$ Facts

With these facts, students skip count by 10s or use their understanding of place value to solve (i.e. 4×10 is 4 tens $=40$).

Examples:
$5 \times 10=50(5$ tens $=50)$
$50 \div 5=10$
$10 \times 3=30$ (Count by 10s 3 times...10, 20, 30) $30 \div 10=3$

$\times 5$ Facts

With these facts, students can skip count by 5 s or build on their understanding of $\times 10$ facts and take half (i.e. $6 \times 5 \ldots 6 \times 10=60$ and half of 60 is 30)

Examples:

$6 \times 5=320(6 \times 10=60$ and half of 60 is 30$)$	$30 \div 5=6$
$5 \times 4=20$ (Count by 5 s 4 times... $5,10,15,20)$	$20 \div 4=5$

$\times 1$ Facts

These facts employ the Identity Property of Multiplication which states "when multiplying by 1 , the product is the same as the other factor".

Examples:
$4 \times 1=4$
$1 \times 8=8$
$4 \div 1=4$
$8 \div 8=1$

$\times 0$ Facts

These facts employ the Zero Property of Multiplication which states "if either factor is 0 , the product will be 0 ". In other words, if you have 0 groups of 7 or if you have 8 groups of 0 , you have nothing. Also, these facts do not have related division facts because you cannot divide by 0 .

Examples:

$5 \times 0=0$
$0 \times 9=0$

$\times 3$ Facts

These facts can be thought of as x2 and then adding 1 more group, or tripling a number.

Examples:

$7 \times 3=21(7 \times 2=14$ plus one more 7 is 21$) \quad 21 \div 7=3$
$3 \times 8=24(8+8+8=24)$
$24 \div 3=8$

$\times 4$ Facts

These facts can be thought of as doubling a double.

Examples:

$6 \times 4=24$ (Double 6=12 and double 12=24) $24 \div 4=6$
$4 \times 8=32$ (Double $8=16$ and double $16=32$) $32 \div 8=4$

$\times 6$ Facts

These facts can be thought of as doubling a multiple of 3 (so students need to know their $x 3$ facts). Another approach to this strategy is $x 5$ fact and add one more group.

Examples:
$7 \times 6=42$ ($7 \times 3=21$ and double it to 42)
$42 \div 7=6$
$6 \times 8=48(5 \times 8=40$ plus one more group of 8 is 48)
$48 \div 6=8$

$x 9$ Facts

These facts build on knowledge of $x 10$ facts, the product of a $x 9$ fact is 1 group less than the product of the same x10 fact.

Examples:

$6 \times 9=54(6 \times 10=60$, take away one group of $6=54) \quad 54 \div 9=6$
$9 \times 8=72(10 \times 8=80$, take away one group of $8=72) \quad 72 \div 8=9$

$\times 8$ Facts

These facts can be thought of as double - double - double. NOTE: If students are fluent in all other categories, there are only TWO x8 facts they will need to learn (see below):

Examples:

$8 \times 8=64$ (Double $8=16$, double $16=32$, double $32=64$) $64 \div 8=8$
$7 \times 8=56$ (Double $7=14$, double $14=28$, double $28=56$) $56 \div 7=8$

$x 7$ Facts

These facts can be thought of by breaking apart the 7 into 5 and 2 , so you multiply by 5 and multiply by 2 and add together. NOTE: If students are fluent in all other categories, there is only ONE remaining $x 7$ fact they will need to learn (see below):

Example:
$7 \times 7=49(7 \times 5=35,7 \times 2=14 ; 35+14=49) \quad 49 \div 7=7$

These strategies are based on the Mastering Basic Math Facts: Multiplication and Division by Susan O'Connell and John SanGiovanni

